Calculation Policy
 Guildhall Feoffment Primary School

2019

This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added. It is a working document and will be revised and amended as necessary.

It is recommended that children begin with the concrete for each concept and move through the pictorial to the abstract but the steps are fluid and can be used alongside each other to represent the same concept in different ways.

[^0]
"You know you've mastered something when you can apply it to a totally new problem in an unfamiliar situation or context." (Mastering Mathematics, Dr Helen Drury)
 Mastery is not just an assessment grade it is an approach to learning, based on high expectations and access for all.

Statement of Intent

As a community primary school centred in the middle of a bustling town, we ensure that our mathematics curriculum is accessible for pupils of all abilities, backgrounds and beliefs and will maximise the development of every child's ability and academic achievement. We strive to deliver a range of exciting and engaging maths lessons which are designed to develop children's fluency, mathematical reasoning and aptitude to solve increasingly complex problems across a range of contexts. We know that providing a variety of contexts for mathematical working allows children to make rich connections across mathematical ideas and other subjects, identifying opportunities to apply skills in science, PE and other areas of the curriculum. We intend pupils to gain an understanding of how mathematics has been developed over centuries, providing the solution to some of history's most intriguing problems, right through to its importance to their own futures today: crucial to science, technology and engineering and essential for financial literacy and employment in their adult lives. At Guildhall Feoffment, we reject the notion that some children 'cannot do maths' and foster a resilient growth mindset; we establish a safe and nurturing classroom environment where young mathematicians are confident and encouraged to take risks to delve deeper into mathematical understanding. We carefully use a variety of assessment techniques to monitor progress and inform teaching, ensuring children are involved in this process and that they are aware of their progress and targets. We intend to make mathematics part of school life, providing opportunities for working across year groups to solve problems and celebrate each other's achievements in assemblies. We use the combination of these approaches to deliver an effective and engaging mathematics curriculum that installs an appreciation for the complexity and potential of maths and a deep enjoyment and curiosity about the subject.

GUIDANCE- ALL YEAR GROUPS

	EYFS/Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
$\begin{aligned} & \text { 등 } \\ & \frac{0}{2} \\ & \frac{7}{\circ} \\ & \hline \frac{0}{4} \end{aligned}$	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on- using cubes. Regrouping to make 10 using ten frame.	Adding three single digits. Use of base 10 to combine two numbers.	Column methodregrouping. Using place value counters (up to 3 digits).	Column methodregrouping. (up to 4 digits)	Column methodregrouping. Use of place value counters for adding decimals.	Column methodregrouping. Abstract methods. Place value counters to be used for adding decimal numbers.
$\begin{aligned} & \text { 두 } \\ & \frac{0}{4} \\ & 0 \\ & \frac{0}{4} \\ & \frac{\rightharpoonup}{3} \end{aligned}$	Taking away ones Counting back Find the difference Part whole model Make 10 using the ten frame	Counting back Find the difference Part whole model Make 10 Use of base 10	Column method with regrouping. (up to 3 digits using place value counters)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. Abstract for whole numbers. Start with place value counters for decimals- with the same amount of decimal places.	Column method with regrouping. Abstract methods. Place value counters for decimals- with different amounts of decimal places.

GUIDANCE- ALL YEAR GROUPS

POLICY- INCLUDING CONCRETE, PICTORIAL AND ABSRATCT METHODS AND CPONCEPTUAL VARIATIONS

Objective and strategy	Concrete	Pictorial	Combining two parts to make a whole - use other resources e.g. shells, teddy bears, cars etc.
Combining two parts to make whole: part whole model. Starting at the bigger number and counting on using cubes.	Children to represent cubes/other resources using dots or crosses. Could move to putting each part on a part- whole model. Four is a part, 3 is a part and seven is the whole.		

Objective and strategy	Concrete	Pictorial	Abstract							
Adding multiples of 10	$50=30=20$ Model using dienes and bead strings	Children to represent the base 10 eg lines for tens and dot/crosses for ones.	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$							
Use known number facts: part part whole	Children explore ways of making numbers within 20		$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$							
Using known facts		$\begin{aligned} & \because+\because=\therefore \\ & \\|\|\mid+\\| \\| \\ & \because=\\| \\|\\| \\| \\ & \square \square+\square \square \end{aligned}$ Children draw representations of H, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$							

Objective and strategy	Concrete	Pictorial	Abstract
Taking ones away	Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used). $4-3=1$	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. இ®O	$7-4=3$ $16-9=7$
Counting back	Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?
Find the difference	Compare objects and amounts Lay objects to represent bar model.	Count on using a number line to find the difference.	James has 14 sweets and his brother has 5. How many more does James have than his brother?

Objective and strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	tht tht tht	$20-4=16$
Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off. $43-21=22$	$43-21=22$
Make 10 strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$

Objective and strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones. Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money	$234-179$ Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3	Can use the phrase 'take and make' for exchange
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As Year 4	Children to draw pv counters and show their exchange-see Y3	$\begin{array}{r} { }^{2} X^{10} X 10{ }^{1}{ }^{1} 6 \\ -\quad 2128 \\ \hline 28,928 \end{array}$ $\begin{array}{ll} \begin{array}{l} \text { Use zeros } \\ \text { for place- } \\ \text { holders. } \end{array} & { }^{6} 7^{10} X^{1} 6{ }^{8} 9 \cdot \\ & -\frac{372}{}{ }^{8} 5 \\ \hline 6796 \cdot 5 \\ & \end{array}$
Year 6-Subtract with increasingly large and more complex numbers and decimal values.	Children struggling with concepts use Y 4 and 5 guidance to support (differentiation)	Children struggling with concepts use Y 4 and 5 guidance to support (differentiation)	$\begin{array}{r} { }^{\circ} x^{14} 810,699 \\ -89,949 \\ \hline 60,750 \end{array}$ $\begin{array}{r} 710 \cdot 5 \cdot{ }^{3} \mathrm{k} 11 \\ -36 \cdot \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array}$

	Objective and strategy	Concrete	Pictorial	Abstract
	Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8	Partition a number and then double each part before recombining it back together.
	Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$
	Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw pictures to represent amounts and make groups	$2 \times 4=8$

| Objective and
 strategy
 Repeated
 addition | Concrete | Use pictorial including number lines to solve |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| prob | | |

Objective and strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers Double 6 is 12	Partition a number and then double each part before recombining it back together.
Counting in multiples of 2,3 , 4, 5, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models.$5+5+5+5+5+5+5+5=40$111 111 111 	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.smy sm sman says3 3 3 3 $?$	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=\square$

Objective and strategy	Concrete	Pictorial	Abstract
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.

Objective and strategy	Concrete	Pictorial	Abstract
Grid method recap from year 3 for 2 digits $\times 1$ digit Move to multiplying 3 digit numbers by 1 digit. (year 4 expectation)	Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows Add up each column, starting with the ones making any exchanges needed Then you have your answer.	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=245$
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$ It is important at this stage that they always multiply the ones first. The corresponding long multiplication is modelled alongside	x 300 20 7 4 1200 80 28 The grid method my be used to show how this relates to a formal written method. Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	

Objective and strategy	Concrete	Pictorial	Abstract
Column Multiplication for 3 and 4 digits $\times 1$ digit.	It is important at this stage that they always multiply the ones first. Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$	x 300 20 7 4 1200 80 28	
Column multiplication	Manipulatives may still be used with the corresponding long multiplication modelled alongside.	Continue to use bar modelling to support problem solving	Place zero (red) first so it is not forgotten. Ensures this rows answer is multiplied by ten as they are multiplying by 60 not 6 . Short muliplication for each row. Add two results for final answer.

Objective and
strategy

Division as
sharing

Concrete

	Objective and strategy	Concrete	Pictorial	Abstract
	Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities $8 \div 2=4$ Children use bar modelling to show and support understanding $12 \div 4=3$	$12 \div 3=4$
	Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines and bar model for grouping Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. 20 ? \square $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Objective and
strategy

Division with
remainders

Divide objects between groups and see how

much is left over | Jump forward in equal jumps on a number line |
| :---: |
| then see how many more you need to jump to |
| find a remainder. |

	Objective and strategy	Concrete	Pictorial	Abstract
	Division with remainders	$2 d \div 1 d$ with remainders using lollipop sticks (Cuisenaire rods above a ruler can also be used). $13 \div 4=$ Use of lollipop stick to form wholessquares are made because we are dividing by 4. There are 3 whole squares with 1 left over. Answer 3 r 1	Children represent the lollipop sticks pictorially. There are 3 whole squares with 1 left over. Answer 3 r 1	Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4 with 1 left over'

[^0]: 'From concrete manipulatives and experiences, students are guided to uncover abstract mathematical concepts or results... The role of the teacher is that of a facilitator who guides students through the concrete, pictorial and abstract levels of understanding by providing appropriate scaffolding and feedback.'
 Ministry of Education (2012)

